# Towards simpler and more transparent quantitative research reports

**Jan Vanhove**| University of Fribourg

The average quantitative research report in applied linguistics is needlessly complicated. Articles with over fifty
hypothesis tests are no exception, but despite such an onslaught of numbers, the patterns in the data often remain opaque to readers
well-versed in quantitative methods, not to mention to colleagues, students, and non-academics without years of experience in navigating
results sections. I offer five suggestions for increasing both the transparency and the simplicity of quantitative research reports: (1)
round numbers, (2) draw more graphs, (3) run and report fewer significance tests, (4) report simple rather than complex analyses when they
yield essentially the same results, and (5) use online appendices liberally to document secondary analyses and share code and data.

**Keywords:**rounding, nonparametric tests, open science, data visualisation, superfluous significance tests

Published online: 13 August 2020

https://doi.org/10.1075/itl.20010.van

https://doi.org/10.1075/itl.20010.van

## References

## References

Allen, M., Poggiali, D., Whitaker, K., Marshall, T. R., & Kievit, R. A.

Anwyl-Irvine, A., Dalmaijer, E. S., Hodges, N., & Evershed, J. K.

Baayen, R. H.

Baguley, T.

Bender, R., & Lange, S.

Bridges, D., Pitiot, A., MacAskill, M., & Peirce, J.

Chambers, C.

Chatfield, C.

Clark, M.

(2019) Generalized additive models. Retrieved from https://m-clark.github.io/generalized-additive-models/

Cramer, A. O. J., van Ravenzwaaij, D., Matzke, D., Steingroever, H., Wetzels, R., Grasman, R. P. P .P., … Wagenmakers, E. -J.

de Groot, A. D.

Delacre, M., Lakens, D., & Leys, C.

Delacre, M., Leys, C., Mora, Y. L., & Lakens, D.

Ehrenberg, A. S. C.

Elwert, F.

Emerson, J. W., Green, W. A., Schloerke, B., Crowley, J., Cook, D., Hofmann, H., & Wickham, H.

Feinberg, R. A., & Wainer, H.

Fox, J.

Gelman, A., & Hill, J.

Gelman, A., & Loken, E.

(2013) The garden of forking paths: Why multiple comparisons can be a problem, even when there is no “fishing expedition” or “p-hacking” and the research hypothesis was posited ahead of time. Retrieved from http://www.stat.columbia.edu/~gelman/research/unpublished/p_hacking.pdf

Gigerenzer, G., & Marewski, J. M.

Goodman, S.

Greenland, S., Senn, S. J., Rothman, K. J., Carlin, J. B., Poole, C., Goodman, S. N., & Altman, D. G.

Healy, K.

Hendrix, L. J., Carter, M. W., & Hintze, J. L.

Hesterberg, T. C.

Huck, S. W., & McLean, R. A.

Huitema, B. E.

Hünermund, P., & Louw, B.

(2020) On the nuisance of control variables in regression analysis. https://arxiv.org/abs/2005.10314

Jacoby, W. G.

Kerr, N. L.

Klein, O., Hardwicke, T. E., Aust, F., Breuer, J., Danielsson, H., Hofelich Mohr, A., … Frank, M. C.

Krashen, S.

Larson-Hall, J., & Plonsky, L.

Loewen, S., Gönülal, T., Isbell, D. R., Ballard, L., Crowther, D., Lim, J., … Tigchelaar, M.

MacCallum, R. C., Zhang, S., Preacher, K. J., & Rucker, D. D.

Maris, E.

Maxwell, S. E., & Delaney, H. D.

Maxwell, S. E., Delaney, H., & Hill, C. A.

McAweeney, M. J., & Klockars, A. J.

Murtaugh, P. A.

Mutz, D. C., Pemantle, R., & Pham, P.

Rohrer, J. M.

Rubin, M.

Ruxton, G. D., & Beauchamp, G.

Sassenhagen, J., & Alday, P. M.

Schad, D. J., Vasishth, S., Hohenstein, S., & Kliegl, R.

Schmider, E., Ziegler, M., Danay, E., Beyer, L., & Bühner, M.

Senn, S.

Sönning, L.

Steegen, S., Tuerlinckx, F., Gelman, A., & Vanpaemel, W.

Tukey, J. W.

Vanhove, J.

(2019a) Visualising statistical uncertainty using model-based graphs. Presentation at the 8th Biennial International Conference on the Linguistics of Contemporary English, Bamberg, Germany. Retrieved from https://janhove.github.io/visualise_uncertainty/

(2019b) cannonball: Tools for teaching statistics. R package, version 0.1.0. Available from https://github.com/janhove/cannonball

Weissgerber, T. L., Milic, N. M., Winham, S. J., & Garovic, V. D.

Wilke, C. O.

Zimmerman, D. W.

Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., & Smith, G. M.