Article published in:
Natural language processing for learner corpus research
Edited by Kristopher Kyle
[International Journal of Learner Corpus Research 7:1] 2021
► pp. 131162
References

References

Banerjee, S., & Pedersen, T.
(2003) The design, implementation, and use of the Ngram Statistics Package. In Proceedings of the Fourth International Conference on Intelligent Text Processing and Computational Linguistics. CrossrefGoogle Scholar
Bestgen, Y.
(2017) Beyond single-word measures: L2 writing assessment, lexical richness and formulaic competence. System, 69, 65–78. CrossrefGoogle Scholar
Bouma, G., & Kloosterman, G.
(2007) Mining syntactically annotated corpora with XQuery. In Proceedings of the linguistic annotation workshop (pp. 17–24). Stroudsburg: Association for Computational Linguistics. CrossrefGoogle Scholar
Boyd, A., & Meurers, D.
(2008) Revisiting the impact of different annotation schemes on PCFG parsing: a grammatical dependency evaluation. In Proceedings of the workshop on parsing German (pp. 24–32). Stroudsburg: Association for Computational Linguistics. CrossrefGoogle Scholar
Carlsen, C.
(2012) Proficiency level–a fuzzy variable in computer learner corpora. Applied Linguistics, 33(2), 161–183. CrossrefGoogle Scholar
Council of Europe
(2001) Common European framework of reference for languages: Learning, teaching, assessment. Cambridge, UK: Cambridge University Press.Google Scholar
Daelemans, W., van den Bosch, A., & Weijters, T.
(1997) IGTree: using trees for compression and classification in lazy learning algorithms. Artificial Intelligence Review, 11(1), 407–423. CrossrefGoogle Scholar
de Marneffe, M.-C., Dozat, T., Silveira, N., Haverinen, K., Ginter, F., Nivre, J., & Manning, C. D.
(2014) Universal Stanford Dependencies: A cross-linguistic typology. In Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC’14) (pp. 4585–4592). European Language Resources Association (ELRA)Google Scholar
de Marneffe, M.-C., & Nivre, J.
(2019) Dependency grammar. Annual Review of Linguistics, 5, 197–218. CrossrefGoogle Scholar
Díaz-Negrillo, A., Meurers, D., Valera, S., & Wunsch, H.
(2010) Towards interlanguage POS annotation for effective learner corpora in SLA and FLT. Language Forum, 36(1–2), 139–154.Google Scholar
Dickinson, M., & Ragheb, M.
(2009) Dependency annotation for learner corpora. In M. Passarotti, A. Przepiórkowski, S. Raynaud, & F. Van Eynde (Eds.), Proceedings of the eighth international workshop on treebanks and linguistic theories (pp. 59–70). Milan: EDUCatt.Google Scholar
Durrant, P., & Schmitt, N.
(2009) To what extent do native and non-native writers make use of collocations? International Review of Applied Linguistics in Language Teaching, 47(2), 157–177. CrossrefGoogle Scholar
Granger, S., & Bestgen, Y.
(2014) The use of collocations by intermediate vs. advanced non-native writers: A bigram-based study. International Review of Applied Linguistics in Language Teaching, 52(3), 229–252. CrossrefGoogle Scholar
Granger, S., & Paquot, M.
(2008) Disentangling the phraseological web. In S. Granger & F. Meunier (Eds.), Phraseology: An interdisciplinary perspective (pp. 27–49). Amsterdam, Philadelphia: John Benjamins. CrossrefGoogle Scholar
Gries, S. T.
(2008) Phraseology and linguistic theory: a brief survey. In S. Granger & F. Meunier (Eds.), Phraseology: An interdisciplinary perspective (pp. 3–26). Amsterdam, Philadelphia: John Benjamins. CrossrefGoogle Scholar
Heid, U.
(2008) Computational phraseology: an overview. In S. Granger & F. Meunier (Eds.), Phraseology: An interdisciplinary perspective (pp. 337–360). Amsterdam, Philadelphia: John Benjamins. CrossrefGoogle Scholar
Housen, A., & Kuiken, F.
(2009) Complexity, accuracy, and fluency in second language acquisition. Applied linguistics, 30(4), 461–473. CrossrefGoogle Scholar
Huang, Y., Murakami, A., Alexopoulou, T., & Korhonen, A.
(2018) Dependency parsing of learner English. International Journal of Corpus Linguistics, 23(1), 28–54. CrossrefGoogle Scholar
Krivanek, J., & Meurers, D.
(2013) Comparing rule-based and data-driven dependency parsing of learner language. In K. Gerdes, E. Hajičová, & L. Wanner (Eds.), Computational dependency theory (pp. 207-225). Amsterdam: IOS Press.Google Scholar
Lüdeling, A., Walter, M., Kroymann, E., & Adolphs, P.
(2005) Multi-level error annotation in learner corpora. In Proceedings of corpus linguistics 2005.Google Scholar
Meurers, D.
(2009) On the automatic analysis of learner language: Introduction to the special issue. CALICO Journal, 26(3), 469–473. CrossrefGoogle Scholar
Meurers, D., & Dickinson, M.
(2017) Evidence and interpretation in language learning research: Opportunities for collaboration with computational linguistics. Language Learning, 67(S1), 66–95. CrossrefGoogle Scholar
Meurers, D., & Wunsch, H.
(2010) Linguistically annotated learner corpora: Aspects of a layered linguistic encoding and standardized representation. In Proceedings of Linguistic Evidence.Google Scholar
Norris, J. M., & Ortega, L.
(2009) Towards an organic approach to investigating CAF in instructed SLA: The case of complexity. Applied Linguistics, 30(4), 555–578. CrossrefGoogle Scholar
Ordelman, R. J. F., De Jong, F. M. G., Van Hessen, A. J., & Hondorp, G. H. W.
(2007) TwNC: a Multifaceted Dutch News Corpus. ELRA Newsletter, 12(3–4).Google Scholar
Ortega, L.
(2003) Syntactic complexity measures and their relationship to L2 proficiency: A research synthesis of college-level L2 writing. Applied Linguistics 24(4), 492–518. CrossrefGoogle Scholar
Ott, N., & Ziai, R.
(2010) Evaluating dependency parsing performance on German learner language. In M. Dickinson, K. Müürisep, & M. Passarotti (Eds.), Proceedings of the ninth international workshop on treebanks and linguistic theories Vol. 9 (pp. 175–186). Northern European Association for Language Technology (NEALT).Google Scholar
Paquot, M.
(2018) Phraseological competence: A missing component in university entrance language tests? insights from a study of EFL learners’ use of statistical collocations. Language Assessment Quarterly, 15(1), 29–43. CrossrefGoogle Scholar
(2019) The phraseological dimension in interlanguage complexity research. Second Language Research, 35(1), 121–145. CrossrefGoogle Scholar
R Core Team
(2017) R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved from https://​www​.R​-project​.org/
Ragheb, M., & Dickinson, M.
(2012) Defining syntax for learner language annotation. In M. Kay & C. Boitet (Eds.), Proceedings of COLING 2012 (pp. 965–974).Google Scholar
Rubin, Housen, & Paquot
in press). Phraseological complexity as an index of L2 Dutch writing proficiency: A partial replication study. In S. Granger Ed. Perspectives on the Second Language Phrasicon: The View from Learner Corpora Bristol Multilingual Matters
Sharwood Smith, M. & Truscott, J.
(2005) Stages or Continua in Second Language Acquisition: A MOGUL Solution. Applied Linguistics, 26(2), 219–240. CrossrefGoogle Scholar
Tsarfaty, R., Nivre, J., & Andersson, E.
(2011) Evaluating dependency parsing: Robust and heuristics-free cross-annotation evaluation. In Proceedings of the 2011 conference on empirical methods in natural language processing (pp. 385–396). Stroudsburg: Association for Computational Linguistics.Google Scholar
van den Bosch, A., Busser, B., Canisius, S., & Daelemans, W.
(2007) An efficient memory-based morphosyntactic tagger and parser for Dutch. In P. Dirix, I. Schuurman, V. Vandeghinste, & F. Van Eynde (Eds.), Proceedings of the 17th meeting of Computational Linguistics in the Netherlands (pp. 191–206).Google Scholar
van der Beek, L., Bouma, G., Malouf, R., & van Noord, G.
(2002) The Alpino dependency treebank. In Computational linguistics in the Netherlands 2001 (pp. 8–22).Google Scholar
van Noord, G.
(2006) At last parsing is now operational. In TALN 2006 (pp. 20–42).Google Scholar
van Noord, G., Schuurman, I., & Bouma, G.
(2011) Lassy Syntactische Annotatie, Revision 19455. Retrieved from http://​www​.let​.rug​.nl​/vannoord​/Lassy​/sa​-man​_lassy​.pdf
van Noord, G., Schuurman, I., & Vandeghinste, V.
(2006) Syntactic annotation of large corpora in STEVIN. In Proceedings of the fifth international conference on language resources and evaluation (LREC’06). European Language Resources Association (ELRA).Google Scholar
Weiss, Z. & Meurers, D.
this issue). Analyzing the linguistic complexity of German learner language in a reading comprehension task: Using proficiency classification to investigate short answer data, the impact of linguistic analysis quality, and cross-data generalizability. International Journal of Learner Corpus Research, Special Issue on NLP.